Could wood fired boiler ash be considered a biochar?

Kurt Spokas

USDA-ARS

Soil and Water Management Unit - St. Paul, MN

What is Biochar?

 Solid residue remaining after the heating of organic materials without oxygen

Pyrolysis

- Pyrolysis is the chemical decomposition of an organic substance by heating
 - Does not involve reactions with oxygen
 - typically in the absence of oxygen
- ⊃ Pyrolysis is also used in everyday activity Cooking → roasting, baking, frying, grilling
- Also occurs in lava flows and forest/prairie fires

Wide Spectrum of Pyrolysis

Both temperature and time factors:

- ☐ High temperature pyrolysis
 →gasification (>800 °C) {+ O₂ }
- □ "Fast" or "Slow" pyrolysis (300-600 °C)
 - Fast pyrolysis
 - 60% bio-oil, 20% biochar, and 20% syngas
 - Time = seconds
 - □ Slow pyrolysis
 - Can be optimized for char production (>50% biochar yields)
 - Time = hours

Biochar

- Gaining significant attention:
 - Carbon Storage
 - Biochar can store atmospheric carbon, potentially providing a mechanism for reduction in atmospheric CO₂ levels
 - Soil Improvements
 - Improve water quality
 - Improve soil fertility
 - Reduce GHG emissions
 - Bioenergy

Charcoal Timeline

1000 AD

1800's

10,000 BC

5,000 BC

1000 BC

1700's

10,000 (?) BC – charcoal in cave drawings

3000-4000 BC - charcoal as fuel

2000 BC – first filtration use of charcoal

1908 – degradation of charcoal by fungi

1940-1950 – charcoal powered car in China

2000's - "Biochar"

Biochar

- Not a "new" idea
- Pre-Columbian Period (1,400 14,000 yrs ago)
 - Amazonian Natives:
 - Hypothesis: biochar was used to increase soil productivity (oxisols) by smoldering agricultural waste
 - Potential source of "Terra Preta" (dark) soils

What has changed?

- Pyrolysis, carbonization, and coalification are long and well establish conversion processes with long research histories
 - Except:
 - Prior emphasis:

- Conversion of biomass to liquids (bio-oils) or gaseous fuels and/or fuel intermediates
- Solid byproduct (biochar) has long been considered a "undesirable side product" (Titirici et al., 2007)

Now solid byproduct is viewed with carbon sequestration potential (climate change)

Byproducts from the Paper Industry

Large sources of biomass residuals:

- Waste water treatment plant residuals
 - ~ 6 million ton yr⁻¹

- Boiler wood ash
 - ~5 million ton yr⁻¹

Current Boiler Wood Ash Management

Estimates have been as high as 90% to landfill

•In the NE US: 80% is land applied and 5% composted with sewage sludge (85% beneficial reuse)

Greene (1988), Campbell (1990) and Vance (1996)

Direct Wood Ash Application

- Numerous agronomic studies have been conducted:
 - Overall beneficial effects observed:
 - Increased yields
 - Liming potential (increase soil pH)
 - Other purposes:
 - Sewage amendment, scrubber systems, cement products (Greene, 1988) and for road building (Ostrofsky,, 1983)
 - Used in Finland since <u>1935</u> as a soil amendment (Hakkila, 1989;
 Korpilahti et al., 1999)
- Similar results obtained in the "biochar" area

Project Overview

- Examining a limited number of wood boiler ash samples for their potential use as a "biochar" material
 - Moving the focus to <u>carbon sequestration</u>
 - Seeking to identify conditions and factors that optimize the residual C content in ash samples

Wood Ash Characteristics

Untreated biochars: 40 to 75 % C

Specific Surface Area

Impacts of Wood Ash on GHG Production/Consumption

- Wood ash samples incubated with Minnesota Ag soil (Waukegan silt loam)
 - 10% w/w addition at field capacity (22 °C)

Preliminary GHG Impacts

Majority suppressed CO₂ production – slowing over all SOM mineralization?

All wood ashes suppressed N₂O production

Impacts on N-mineralization

5 wood ash lower than control

No accumulation of ammonium -- different than biochars

Stability of Carbon

Assessed through CTO-375 (375°C for 16-18 hours)

Chemical Thermal Oxidation test for the quantification of black carbon (recalcitrant carbon: soots, graphite, etc) in sediments (Elmquist et al., 2007)

Untreated biochars are typically between 60-90% of carbon lost during CTO-375 test

Volatile Organic (GC/MS) Fingerprints

Very low amount of volatiles observed on wood ash agrees with results of Someshwar (1996).

Biochar typically has higher sorbed volatiles -> potential microbial inhibitors

Preliminary Conclusions

- Overall, wood ash does present an interesting potential for carbon sequestration
 - · Converting biomass into recalcitrant carbon, while producing energy at mills
 - What adjustments can be made at individual mills to increase C content?
- Impacts on soil system
 - Similar to biochar, with some differences:
 - Wood ash is cleaner from a sorbed volatile organic standpoint (lower VOC contamination)
 - Concern of pH (pre-treatment?)
 - Lack of impact on ammonia oxidation
 - Still decrease in N₂O production (pH related?)
- Wood ash is typically lower in total carbon than biochars, but indications are the C is of higher stability
 - More resistant to oxidation
- Not all biochars (wood ashes) are created equal

Acknowledgements

- NCASI
- AECOM Environment (Doug Hermann)

- Technical support from :
 - Martin duSaire, Tia Phan, Lianne Endo and Kia Yang

Thank you for your attention

